Refine Your Search

Topic

Author

Search Results

Technical Paper

Application of Catalytic Converters to the Caterpillar 785 Off-Highway Truck

1993-04-01
931183
Catalytic converters have been developed to reduce diesel engine emissions to aid in meeting the 1994 EPA on-highway standards for heavy duty (above 8,500 pound gross vehicle weight) trucks. As converters are made available for on-highway applications, questions inevitably arise as to their applicability to larger off-highway equipment. This paper covers the application of catalytic converters to a Caterpillar 785 off-highway truck operating in a diamond mine in Siberia. Targeted emissions for this application were unburned hydrocarbons (HC) (especially aldehydes), and carbon monoxide (CO). Experience from the on-highway converter development indicated oxidation catalysts could reduce these emissions. This paper addresses the development and selection of a catalytic converter for the 785 truck. Tradeoffs of vehicle modifications vs. catalytic converter performance and design are discussed.
Journal Article

An Evaluation of Different Combustion Strategies for SI Engines in a Multi-Mode Combustion Engine

2008-04-14
2008-01-0426
Future pressures to reduce the fuel consumption of passenger cars may require the exploitation of alternative combustion strategies for gasoline engines to replace, or use in combination with the conventional stoichiometric spark ignition (SSI) strategy. Possible options include homogeneous lean charge spark ignition (HLCSI), stratified charge spark ignition (SCSI) and homogeneous charge compression ignition (HCCI), all of which are intended to reduce pumping and thermal losses. In the work presented here four different combustion strategies were evaluated using the same engine: SSI, HLCSI, SCSI and HCCI. HLCSI was achieved by early injection and operating the engine lean, close to its stability limits. SCSI was achieved using the spray-guided technique with a centrally placed multi-hole injector and spark-plug. HCCI was achieved using a negative valve overlap to trap hot residuals and thus generate auto-ignition temperatures at the end of the compression stroke.
Technical Paper

An Approach for Modeling the Effects of Gas Exchange Processes on HCCI Combustion and Its Application in Evaluating Variable Valve Timing Control Strategies

2002-10-21
2002-01-2829
The present study introduces a modeling approach for investigating the effects of valve events and gas exchange processes in the framework of a full-cycle HCCI engine simulation. A multi-dimensional fluid mechanics code, KIVA-3V, is used to simulate exhaust, intake and compression up to a transition point, before which chemical reactions become important. The results are then used to initialize the zones of a multi-zone, thermo-kinetic code, which computes the combustion event and part of the expansion. After the description and the validation of the model against experimental data, the application of the method is illustrated in the context of variable valve actuation. It has been shown that early exhaust valve closing, accompanied by late intake valve opening, has the potential to provide effective control of HCCI combustion.
Technical Paper

A Theoretical Study of the Potential of NOx Reduction by Fuel Rate Shaping in a DI Diesel Engine

2000-10-16
2000-01-2935
In this paper, a theoretical study is presented where fuel rate shaping is analyzed in combination with EGR as a method for reducing NOx formation. The analytical tools used include an empirically based model to convert fuel rate to heat release rate, and a zero dimensional multizone combustion model to calculate combustion products, local flame temperatures and NOx emissions at a given heat release rate. The multizone model, which has been presented earlier, includes flame radiation and convective heat losses. Several geometrical shapes of the fuel rate are tested for different combustion timings and EGR rates. It is found that the fuel rate giving the lowest NOx formation varies with the injection timing. In order to lower the NOx emissions at normal and advanced injection timings, the fuel rate should have a rather long duration, and start at its maximum level followed by a slow decay.
Journal Article

A Study on Acoustical Time-Domain Two-Ports Based on Digital Filters with Application to Automotive Air Intake Systems

2011-05-17
2011-01-1522
Analysis of pressure pulsations in ducts is an active research field within the automotive industry. The fluid dynamics and the wave transmission properties of internal combustion (IC) engine intake and exhaust systems contribute to the energy efficiency of the engines and are hence important for the final amount of CO₂ that is emitted from the vehicles. Sound waves, originating from the pressure pulses caused by the in- and outflow at the engine valves, are transmitted through the intake and exhaust system and are an important cause of noise pollution from road traffic at low speeds. Reliable prediction methods are of major importance to enable effective optimization of gas exchange systems. The use of nonlinear one-dimensional (1D) gas dynamics simulation software packages is widespread within the automotive industry. These time-domain codes are mainly used to predict engine performance parameters such as output torque and power but can also give estimates of radiated orifice noise.
Technical Paper

A Method for Estimating the Benefit of Autonomous Braking Systems Using Traffic Accident Data

2006-04-03
2006-01-0473
One way of avoiding crashes or mitigating the consequences of a crash is to apply an autonomous braking system. Quantifying the benefit of such a system in terms of injury reduction is a challenge. At the same time it is a fundamental input into the vehicle development process. This paper describes a method to estimate the effectiveness of reducing speed prior to impact. A holistic view of quantifying the benefit is presented, based on existing real life crash data and basic dynamic theories. It involves a systematic and new way of examining accident data in order to extract information concerning pre-crash situations. One problem area when implementing collision mitigation systems is being able to achieve sufficient target discrimination. The results from the case study highlight frontal impact situations from real world accident data that have the greatest potential in terms of improving accident outcome.
X